Comment choisir N et n₁?

Quelques notations:

	Les billes dans le biberon	Echantillon déterminé par la classe
Effectif total	N = 5 (ou on peut prendre une plus grande valeur)	n = nombre de tirages attendus = 50, 100, 150, 200
Nombre de billes noires	n_1 : suivant la composition choisie	X = nombre de billes noires comptées
Fréquence des noires	$p = \frac{n_1}{N}$	$x = \frac{X}{n}$

On note a la probabilité correspondant au risque d'erreur choisi : a = 0,01 pour un risque d'erreur de 1%, a = 0,05 pour un risque d'erreur de 5%. Et oui, si les élèves n'ont pas de "chance", ils pourraient avoir un échantillon qui ferait partie des 1% (ou 5%) les plus "rares".

Les variables aléatoires :

Voir une bille parmi 5 et noter sa couleur est une expérience de Bernoulli. La couleur noire de la bille pouvant correspondre au succès et la couleur blanche à l'échec.

La probabilité p d'obtenir une bille noire est ce que les élèves cherchent et que le professeur connait a priori.

Si l'on répète n fois de manière indépendante une expérience de Bernoulli, le nombre de succès au cours de ces n épreuves est une variable aléatoire X qui suit la loi binomiale (de paramètres n et p). Son espérance est np et son écart type est $\sqrt{np(1-p)}$.

La fréquence $F = \frac{X}{n}$ peut être approchée par la loi normale N $(p, \frac{\sigma}{\sqrt{n}})$ avec $\sigma = \sqrt{p(1-p)}$.

Donc:

x appartient à l'intervalle [p - 1,96 $\frac{\sigma}{\sqrt{n}}$; p + 1,96 $\frac{\sigma}{\sqrt{n}}$] avec un risque de 5%.

x appartient à l'intervalle [p – 2,58 $\frac{\sigma}{\sqrt{n}}$; p + 2,58 $\frac{\sigma}{\sqrt{n}}$] avec un risque de 1%.

Voir la partie "Un peu de théorie".

Les N et n₁ possibles :

Combien les élèves doivent-ils regarder de billes pour que l'intervalle de confiance ne contienne qu'une seule valeur de p possible?

Pour que les élèves aient la possibilité de trouver p (la valeur de x trouvée doit être proche de la valeur p), il faut que l'intervalle n'ait pas une amplitude trop grande :

Les valeurs p possibles sont $0, \frac{1}{N}, \frac{2}{N}, ..., \frac{N-1}{N}$, 1. Pour que l'intervalle de confiance ne contienne qu'une valeur possible de p, il faut donc que l'amplitude de l'intervalle de confiance soit strictement inférieure à $\frac{1}{N}$.

On pose t = 1,96 si le risque choisi est a = 5%, t = 2,58 si le risque choisi est a = 1%.

Il faut donc que 2t $\frac{\sigma}{\sqrt{n}}$ (l'amplitude de l'intervalle) soit strictement inférieure à $\frac{1}{N}$.

Donc il faut $N < \frac{\sqrt{n}}{2t\sigma}$. (avec n: le nombre d'expériences faites par les élèves et N: le nombre de billes)

Cela revient à exprimer une condition sur $n: n > 4t^2N^2p$ (1-p) car $\sigma = \sqrt{p(1-p)}$

Si on appelle k le nombre de billes noires, alors $p = \frac{k}{N}$ et la condition devient $n > 4t^2k$ (N-k)

Le maximum de k (N-k) étant $\frac{N^2}{4}$, en prenant $n > t^2N^2$, on est sûr d'avoir une seule valeur possible de p dans l'intervalle de confiance.

Si N = 5, il faut n>96 (5% d'erreur) ou n>166 (1% d'erreur)

 $Si\ N = 6$, il faut n>138 (5% d'erreur) ou n>239 (1% d'erreur)

Si N = 7, il faut n > 199 (5% d'erreur) ou n > 327 (1% d'erreur)

Si N = 8, il faut n > 246 (5% d'erreur) ou n > 427 (1% d'erreur)