{VERSION 5 0 "IBM INTEL NT" "5.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 2 1 2 0 0 0 1 }{CSTYLE "2D Output" -1 20 "Times" 0 1 0 0 255 1 0 0 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle10" -1 217 "Courier" 1 12 255 0 0 1 2 1 2 2 1 2 0 0 0 1 }{CSTYLE "_cstyle11" -1 218 "Times" 0 1 0 0 255 1 0 0 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle12" -1 219 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle13" -1 220 "Times" 1 12 0 0 255 1 2 2 2 2 2 2 0 0 0 1 }{CSTYLE "_cstyle14" -1 221 "Courier" 0 1 255 0 0 1 0 1 0 2 1 2 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 } {PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 0 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "Maple Output" -1 11 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 0 0 0 1 }3 3 0 0 0 0 2 0 2 0 2 2 -1 1 }{PSTYLE "Maple Plot" -1 13 1 {CSTYLE "" -1 -1 "T imes" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 1 0 0 0 0 2 0 2 0 2 2 0 1 } {PSTYLE "Title" 0 18 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 1 0 0 0 0 0 0 0 }3 0 0 -1 12 12 0 0 0 0 0 0 19 0 }{PSTYLE "Author" 0 19 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 }3 0 0 -1 8 8 0 0 0 0 0 0 -1 0 }{PSTYLE "_pstyle10" -1 210 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE " _pstyle11" -1 211 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle13" -1 212 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle14" -1 213 1 {CSTYLE "" -1 -1 "Time s" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }3 3 0 0 0 0 2 0 2 0 2 2 0 1 } {PSTYLE "_pstyle15" -1 214 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle16" -1 215 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 2 0 2 0 2 2 0 1 }{PSTYLE "_pstyle17" -1 216 1 {CSTYLE "" -1 -1 "Times" 1 12 0 0 0 1 2 2 2 2 2 2 1 1 1 1 }1 1 0 0 0 0 1 0 1 0 2 2 0 1 }} {SECT 0 {EXCHG {PARA 18 "" 0 "" {TEXT -1 16 "La course \340 z\351ro" } }{PARA 19 "" 0 "" {TEXT -1 12 "Gilles Aldon" }}{PARA 3 "" 0 "" {TEXT -1 11 "Heuristique" }}{PARA 210 "" 0 "" {TEXT -1 0 "" }}{PARA 210 "" 0 "" {TEXT -1 92 "La proc\351dure qui suit est \351crite r\351cursivem ent mais on pourrait l'\351crire dans une boucle..." }}{PARA 0 "" 0 " " {TEXT -1 45 "si n est inf\351rieur \340 9 on soustrait n, sinon," }} {PARA 0 "" 0 "" {TEXT -1 176 "si n est divisible par un \"grand\" nomb re (entre 5 et 9) on le divise par ce nombre et sinon, on le ram\350n e par une soustraction ou une addition au multiple de 9 le plus proche ." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 75 "ramene:=proc(n,compt,l)\noption remember;\nlocal x, j,aux,k,aux2;\nx:=n;aux:=1;" }{MPLTEXT 1 217 98 "\nif x<=9 then return [compt+1,[op(l),x,\"-\",x,\"=0\"]]; fi;\nfor j from 5 to 8 do\nif (x \+ mod j=0) then " }{MPLTEXT 1 217 102 "\naux:=j fi;\nod;\nif aux>=2 and x mod 9<>0 then ramene(x/aux,compt+1,[op(l),x,\"/\",aux,\"=\",x/aux] ) else" }{MPLTEXT 1 217 149 "\nif x mod 9=0 then ramene(x/9,compt+1,[o p(l),x,\"/9=\",x/9]) else\n \n ramene(x-(x mod 9),com pt+1,[op(l),x,\"-\",x mod 9,\"=\",x-(x mod 9)])" }{MPLTEXT 1 217 35 " \n \nfi;fi;end:" }}}{EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 17 "ramene(990,0,[]);" }}{PARA 212 "" 1 "" {XPPMATH 20 "6#7$\"\"&76\"$!**Q$/9=6\"\"$5\"F)Q\"/F(F$Q\"=F(\"#AF,Q\"-F(\"\"%F+\"# =F/F'\"\"#F0F-F0Q#=0F(" }{TEXT 218 1 " " }}}{EXCHG {PARA 0 "" 0 "" {TEXT -1 43 "On peut perfectionner un peu la proc\351dure :" }}} {EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 75 "ramene_plus_fin:=proc(n) \nlocal i,k,x;\nx:=n;\nif op(1,ramene(x,0,[]))>4 then " }{MPLTEXT 1 217 249 "\nfor k from 1 to 9 do\n if op(1,ramene(x+k,0,[]))<5 then \+ return [op(1,ramene(x+k,0,[]))+1,x,\"+\",k,\"=\",x+k,op(2,ramene(x+k,0 ,[]))] fi;\n if op(1,ramene(x-k,0,[]))<5 then return [op(1,ramene(x -k,0,[]))+1,x,\"-\",k,\"=\",x-k,op(2,ramene(x-k,0,[]))] fi;" } {MPLTEXT 1 217 32 "\nod;\n fi;\nreturn ramene(x,0,[]);" }{MPLTEXT 1 217 5 "\nend:" }}}{EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 21 "ramene _plus_fin(829);" }}{PARA 212 "" 1 "" {XPPMATH 20 "6#7)\"\"&\"$H)Q\"+6 \"\"\"$Q\"=F'\"$K)75F*Q\"/F'\"\")F)\"$/\"F.F,F-F)\"#8F/Q\"-F'\"\"%F)\" \"*F2F0F2Q#=0F'" }{TEXT 218 1 " " }}}{EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 21 "ramene_plus_fin(851);" }}{PARA 212 "" 1 "" {XPPMATH 20 "6#7$\"\"'7;\"$^)Q\"-6\"\"\"&Q\"=F(\"$Y)F+Q$/9=F(\"#%*F-F' \"\"%F*\"#!*F/F,\"#5F0Q\"/F(F)F*\"\"#F2F'F2Q#=0F(" }{TEXT 218 1 " " }} }{EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 21 "ramene_plus_fin(990);" }}{PARA 212 "" 1 "" {XPPMATH 20 "6#7$\"\"&76\"$!**Q$/9=6\"\"$5\"F)Q\"/ F(F$Q\"=F(\"#AF,Q\"-F(\"\"%F+\"#=F/F'\"\"#F0F-F0Q#=0F(" }{TEXT 218 1 " " }}}{EXCHG {PARA 3 "" 0 "" {TEXT -1 22 "En utilisant un graphe" }} {PARA 0 "" 0 "" {TEXT -1 167 "On construit un graphe dont les sommets \+ sont les nombres de 1 \340 n+9 ; les ar\352tes relient deux nombres qu i peuvent se d\351duire l'un de l'autre par une op\351ration permise. " }}{PARA 0 "" 0 "" {TEXT -1 93 "On utilise ensuite les fonctionalit \351s de Maple pour d\351terminer le plus court chemin de n \340 0." } }}{EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 15 "with(networks):" }}} {EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 76 "construis:=proc(n)\nloca l vset,eset,G,i,j;\nvset:=\{seq(i,i=0..n+9)\};\neset:=\{\};" } {MPLTEXT 1 217 69 "\nG:=graph(vset,eset);\nfor i from 0 to n+9 do\nfor j from i+1 to n+9 do" }{MPLTEXT 1 217 98 "\nif j-i<=9 or (i>0 and j \+ mod i=0 and j/i<=9) then addedge([j,i],G); addedge([i,j],G) fi;\nod; \nod;" }{MPLTEXT 1 217 8 "\nG;\nend:" }}}{EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 51 "T:=shortpathtree(construis(829),0):path([0,829],T); " }}{PARA 212 "" 1 "" {XPPMATH 20 "6#7(\"\"!\"\"*\"#8\"$/\"\"$K)\"$H) " }{TEXT 218 1 " " }}}{EXCHG {PARA 211 "> " 0 "" {MPLTEXT 1 217 51 "T: =shortpathtree(construis(851),0):path([0,851],T);" }{MPLTEXT 1 219 50 "C'est un des deux cas \340 6 pas, l'autre \351tant 853 :" }}{PARA 213 "" 1 "" {XPPMATH 20 "6#7)\"\"!\"\"*\"#:\"$?\"\"$S)\"$W)\"$^)" } {TEXT 220 3 " " }}}{EXCHG {PARA 210 "> " 0 "" {MPLTEXT 1 221 51 "T:= shortpathtree(construis(853),0):path([0,853],T);" }}{PARA 212 "" 1 "" {XPPMATH 20 "6#7)\"\"!\"\"*\"#:\"$?\"\"$S)\"$W)\"$`)" }{TEXT 218 1 " \+ " }}}{EXCHG {PARA 211 "" 0 "" {TEXT -1 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 69 "draw(construis(22));T:=shortpathtree(construis(22), 0):path([0,22],T);" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}{PARA 13 "" 1 "" {GLPLOT2D 1313 829 829 {PLOTDATA 2 "6aam-%'CURVESG6$7$7$$\"+Jhp9$)!#5$!+>BqbbF*7$$\"+U,J:;!#= $!\"\"\"\"!-%'COLOURG6&%$RGBGF3$\"#5F2F3-F$6$7$7$$\"+2G&y!)*F*$!+/K!4& >F*F-F4-F$6$7$F-7$$\"+J`zQ#*F*$!+5V$o#QF*F4-F$6$7$FEF-F4-F$6$7$7$$!+=y 1rqF*$\"+1y1rqF*7$$!+.G&y!)*F*$!+EK!4&>F*F4-%%TEXTG6$FEQ#306\"-%'POINT SG6#F=-Fen6$F=Q#31Fhn-Fen6$F'Q#29Fhn-Fjn6#FE-Fjn6#7$$\"+?y1rqF*$!+.y1r qF*-Fen6$FfoQ#28Fhn-Fjn6#F'-Fen6$7$$\"+KV$o#QF*$!+A`zQ#*F*Q#26Fhn-Fjn6 #7$$\"+RBqbbF*$!+F*FVQ#25Fhn -Fjn6#Fbp-Fen6$F-Q#24Fhn-Fjn6#Fdq-Fen6$7$$!+1K!4&>F*$!+2G&y!)*F*Q#23Fh n-Fjn6#F--Fjn6#7$$!+7V$o#QF*$!+I`zQ#*F*-Fen6$F[sQ#22Fhn-Fjn6#Far-Fen6$ 7$$!+0y1rqF*$!+>y1rqF*Q#20Fhn-Fjn6#7$$!+@BqbbF*$!+Hhp9$)F*-Fen6$F_tQ#2 1Fhn-Fjn6#7$Fep$!+IV$o#QF*-Fen6$FitQ#18Fhn-Fjn6#7$$!+=hp9$)F*$!+PBqbbF *-Fen6$FauQ#19Fhn-Fjn6#Fgs-Fjn6#7$F1$!+:w1-T!#>-Fen6$F]vQ#16Fhn-Fjn6#F U-Fen6$FUQ#17Fhn-Fen6$7$$!+H`zQ#*F*$\"+8V$o#QF*Q#14Fhn-Fjn6#7$$!+1G&y! )*F*$\"+3K!4&>F*-Fen6$FcwQ#15Fhn-Fen6$FPQ#12Fhn-Fjn6#7$$!+Ghp9$)F*$\"+ ABqbbF*-Fen6$F`xQ#13Fhn-Fjn6#F[w-Fen6$7$$!+OBqbbF*$\"+>hp9$)F*Q#11Fhn- Fjn6#FP-Fjn6#F\\y-Fjn6#7$$!+GV$o#QF*$\"+B`zQ#*F*-Fen6$FhyQ#10Fhn-Fjn6# 7$$!+3Q.^?F`v$\"\"\"F3-Fen6$FbzQ\"8Fhn-Fjn6#7$$!+CK!4&>F*$\"+.G&y!)*F* -Fen6$F\\[lQ\"9Fhn-Fjn6#7$$\"+?K!4&>F*$\"+/G&y!)*F*-Fen6$Ff[lQ\"7Fhn-F en6$7$$\"+DV$o#QF*$\"+D`zQ#*F*Q\"6Fhn-Fjn6#F`\\l-Fen6$7$$\"+GBqbbF*$\" +Chp9$)F*Q\"5Fhn-Fjn6#Fj\\l-Fjn6#7$$\"+5y1rqF*$\"+8y1rqF*-Fen6$Fd]lQ\" 4Fhn-Fen6$7$$\"+Ahp9$)F*$\"+JBqbbF*Q\"3Fhn-Fen6$7$Fc\\lFa\\lQ\"2Fhn-Fj n6#F^^l-Fen6$7$Fi[l$\"+@K!4&>F*Q\"1Fhn-Fjn6#Ff^l-Fen6$7$Fez$F3F3Q\"0Fh n-Fjn6#F\\_l-F$6$7$F-FjpF4-Fjn6#Fd_l-F$6$7$FjpFdqF4-F$6$7$FbzFcwF4-F$6 $7$FdqFbpF4-F$6$7$FbpFdqF4-F$6$7$FUF\\yF4-F$6$7$F-F=F4-F$6$7$FfoFjpF4- F$6$7$F=FbpF4-F$6$7$FfoFdqF4-F$6$7$FjpFEF4-F$6$7$FbzF\\[lF4-F$6$7$Ff[l Fd_lF4-F$6$7$FhyFcwF4-F$6$7$FjpF'F4-F$6$7$FEFjpF4-F$6$7$F-F'F4-F$6$7$F dqFjpF4-F$6$7$F=FarF4-F$6$7$FjpFfoF4-F$6$7$F'FfoF4-F$6$7$Fd]lF\\yF4-F$ 6$7$F-F`\\lF4-F$6$7$FhyFj\\lF4-F$6$7$FdqFfoF4-F$6$7$F`\\lFf[lF4-F$6$7$ F'FjpF4-F$6$7$FgsFhyF4-F$6$7$F`\\lFEF4-F$6$7$FEFhyF4-F$6$7$FhyF[wF4-F$ 6$7$FitF_tF4-F$6$7$FfoFauF4-F$6$7$FbzF[wF4-F$6$7$F\\_lFj\\lF4-F$6$7$FE FdqF4-F$6$7$F\\yF`xF4-F$6$7$F_tFitF4-F$6$7$FPFj\\lF4-F$6$7$F]vF\\[lF4- F$6$7$FhyFf[lF4-F$6$7$FdqF'F4-F$6$7$F[sFUF4-F$6$7$FfoF'F4-F$6$7$FbzFf[ lF4-F$6$7$FgsFd]lF4-F$6$7$F[sF_tF4-F$6$7$FEF`\\lF4-F$6$7$FbzF\\_lF4-F$ 6$7$FbpF=F4-F$6$7$F'FdqF4-F$6$7$FauFhyF4-F$6$7$F]vFdqF4-F$6$7$F\\[lF\\ yF4-F$6$7$Ff[lFbzF4-F$6$7$FUF\\[lF4-F$6$7$FjpFauF4-F$6$7$FarF[wF4-F$6$ 7$F=FdqF4-F$6$7$F\\[lF]vF4-F$6$7$F[wF`\\lF4-F$6$7$F`\\lFcwF4-F$6$7$F\\ _lF^^lF4-F$6$7$F_tFf[lF4-F$6$7$F`\\lFitF4-F$6$7$FcwFPF4-F$6$7$F[sF[wF4 -F$6$7$Fj\\lF\\[lF4-F$6$7$FfoFEF4-F$6$7$Fd]lF`xF4-F$6$7$FdqFEF4-F$6$7$ F`\\lFbzF4-F$6$7$Fd]lFPF4-F$6$7$F`\\lF-F4-F$6$7$Ff^lF\\yF4-F$6$7$Fj\\l FcwF4-F$6$7$FdqF=F4-F$6$7$FPF\\[lF4-F$6$7$FPF`\\lF4-F$6$7$Ff[lFf^lF4-F $6$7$Ff[lFcwF4-F$6$7$FfoF=F4-F$6$7$Ff[lFd]lF4-F$6$7$F\\_lFhyF4-F$6$7$F `xFgsF4-F$6$7$F-FcwF4-F$6$7$FEF'F4-F$6$7$F^^lFjpF4-F$6$7$F]vFarF4-F$6$ 7$F-Fd]lF4-F$6$7$F\\yF[wF4-F$6$7$FjpFbpF4-F$6$7$Ff[lF^^lF4-F$6$7$Ff[lF j\\lF4-F$6$7$F'FEF4-F$6$7$Fj\\lFdqF4-F$6$7$F=FjpF4-F$6$7$FarFgsF4-F$6$ 7$FbpFjpF4-F$6$7$FUFitF4-F$6$7$FUFbpF4-F$6$7$F\\[lFcwF4-F$6$7$F]vFbzF4 -F$6$7$FitF]vF4-F$6$7$F`xFPF4-F$6$7$FjpF=F4-F$6$7$F\\[lFf[lF4-F$6$7$Fg sFbpF4-F$6$7$F\\[lF`xF4-F$6$7$F-FgsF4-F$6$7$F'F=F4-F$6$7$F^^lF\\yF4-F$ 6$7$F\\yFf[lF4-F$6$7$FfoFbpF4-F$6$7$FcwF`\\lF4-F$6$7$F[wF_tF4-F$6$7$F` \\lF\\[lF4-F$6$7$FitF^^lF4-F$6$7$F]vF_tF4-F$6$7$F\\[lFPF4-F$6$7$FgsF[w F4-F$6$7$F[wFPF4-F$6$7$FEFfoF4-F$6$7$F]vF-F4-F$6$7$F_tFauF4-F$6$7$F]vF [sF4-F$6$7$FauFUF4-F$6$7$FhyF]vF4-F$6$7$FbpFitF4-F$6$7$FcwFbzF4-F$6$7$ F=F'F4-F$6$7$FUFPF4-F$6$7$FarFitF4-F$6$7$F\\yFgsF4-F$6$7$FarFfoF4-F$6$ 7$FbpFUF4-F$6$7$FEF=F4-F$6$7$FgsFitF4-F$6$7$FUF`xF4-F$6$7$FitF[wF4-F$6 $7$F\\yFhyF4-F$6$7$FcwF[wF4-F$6$7$F-FbzF4-F$6$7$F`\\lF[wF4-F$6$7$FbpFf oF4-F$6$7$F-FfoF4-F$6$7$FarFbpF4-F$6$7$F=FfoF4-F$6$7$F=FEF4-F$6$7$FarF cwF4-F$6$7$F_tFbpF4-F$6$7$FgsFjpF4-F$6$7$FgsF'F4-F$6$7$F\\[lF[wF4-F$6$ 7$FauFbpF4-F$6$7$FcwFitF4-F$6$7$F`xF[wF4-F$6$7$F]vF[wF4-F$6$7$FjpF-F4- F$6$7$F'FbpF4-F$6$7$FauF[wF4-F$6$7$F_tFgsF4-F$6$7$FbpF'F4-F$6$7$Fd_lFf ^lF4-F$6$7$F\\yFUF4-F$6$7$F]vF`xF4-F$6$7$Ff^lFd_lF4-F$6$7$Fd_lF\\_lF4- F$6$7$F\\_lFd_lF4-F$6$7$F[sF]vF4-F$6$7$Fd_lFj\\lF4-F$6$7$Fj\\lFd_lF4-F $6$7$FUF_tF4-F$6$7$FarF=F4-F$6$7$Fd_lFd]lF4-F$6$7$Fd]lFd_lF4-F$6$7$Fd_ lF^^lF4-F$6$7$F^^lFd_lF4-F$6$7$FbzFd_lF4-F$6$7$Fd_lFf[lF4-F$6$7$FitF` \\lF4-F$6$7$FarFdqF4-F$6$7$Fd_lF`\\lF4-F$6$7$F`\\lFd_lF4-F$6$7$F\\[lFd _lF4-F$6$7$Fd_lFbzF4-F$6$7$Ff^lF\\_lF4-F$6$7$Fd_lF\\[lF4-F$6$7$F\\_lFf ^lF4-F$6$7$F\\_lFf[lF4-F$6$7$Ff[lF\\_lF4-F$6$7$F\\_lF`\\lF4-F$6$7$F`\\ lF\\_lF4-F$6$7$F]vFauF4-F$6$7$Fj\\lF\\_lF4-F$6$7$F\\_lFd]lF4-F$6$7$Fd] lF\\_lF4-F$6$7$F_tFPF4-F$6$7$F^^lF\\_lF4-F$6$7$FjpFitF4-F$6$7$F_tFdqF4 -F$6$7$FdqF]vF4-F$6$7$F\\_lFbzF4-F$6$7$F\\[lF\\_lF4-F$6$7$FhyF\\_lF4-F $6$7$F\\_lF\\[lF4-F$6$7$Ff^lFd]lF4-F$6$7$Fd]lFf^lF4-F$6$7$Ff^lF^^lF4-F $6$7$F^^lFf^lF4-F$6$7$F`\\lFf^lF4-F$6$7$Ff^lFj\\lF4-F$6$7$Fj\\lFf^lF4- F$6$7$FEF[sF4-F$6$7$Ff^lF`\\lF4-F$6$7$FPF]vF4-F$6$7$F\\[lFf^lF4-F$6$7$ Ff^lFbzF4-F$6$7$FbzFf^lF4-F$6$7$Ff^lFf[lF4-F$6$7$Ff^lF\\[lF4-F$6$7$F\\ yFf^lF4-F$6$7$Ff^lFhyF4-F$6$7$FhyFf^lF4-F$6$7$FarFjpF4-F$6$7$F_tF]vF4- F$6$7$F]vFf^lF4-F$6$7$Ff^lF[wF4-F$6$7$F[wFf^lF4-F$6$7$Ff^lFPF4-F$6$7$F PFf^lF4-F$6$7$FarFauF4-F$6$7$FgsF]vF4-F$6$7$F[wFcwF4-F$6$7$F^^lF`\\lF4 -F$6$7$F`\\lF^^lF4-F$6$7$F^^lFj\\lF4-F$6$7$Fj\\lF^^lF4-F$6$7$F^^lFd]lF 4-F$6$7$Fd]lF^^lF4-F$6$7$Ff^lFitF4-F$6$7$FitFf^lF4-F$6$7$Ff^lF]vF4-F$6 $7$FhyF^^lF4-F$6$7$F^^lF\\[lF4-F$6$7$F\\[lF^^lF4-F$6$7$F^^lFbzF4-F$6$7 $FbzF^^lF4-F$6$7$F^^lFf[lF4-F$6$7$FfoF[wF4-F$6$7$F^^lF_tF4-F$6$7$FitFU F4-F$6$7$FauFjpF4-F$6$7$F`xFauF4-F$6$7$F_tF^^lF4-F$6$7$F^^lFitF4-F$6$7 $F^^lFcwF4-F$6$7$FcwF^^lF4-F$6$7$F^^lFPF4-F$6$7$FPF^^lF4-F$6$7$F\\yF^^ lF4-F$6$7$F^^lFhyF4-F$6$7$Fd]lFhyF4-F$6$7$FhyFd]lF4-F$6$7$Fd]lF\\[lF4- F$6$7$F\\[lFd]lF4-F$6$7$Fd]lFbzF4-F$6$7$FbzFd]lF4-F$6$7$Fd]lFf[lF4-F$6 $7$Fd]lF`\\lF4-F$6$7$F`\\lFd]lF4-F$6$7$Fd]lFj\\lF4-F$6$7$Fj\\lFd]lF4-F $6$7$FEFbpF4-F$6$7$FjpF^^lF4-F$6$7$F^^lF-F4-F$6$7$F-F^^lF4-F$6$7$Fd]lF gsF4-F$6$7$Fd]lF]vF4-F$6$7$F]vFd]lF4-F$6$7$F`xFd]lF4-F$6$7$F[sFauF4-F$ 6$7$FPFd]lF4-F$6$7$F\\yFd]lF4-F$6$7$F\\[lFj\\lF4-F$6$7$Fj\\lFbzF4-F$6$ 7$FbzFj\\lF4-F$6$7$Fj\\lFf[lF4-F$6$7$Fj\\lF`\\lF4-F$6$7$F`\\lFj\\lF4-F $6$7$Fd]lFfoF4-F$6$7$FfoFd]lF4-F$6$7$Fd]lF-F4-F$6$7$FcwFj\\lF4-F$6$7$F j\\lF[wF4-F$6$7$F[wFj\\lF4-F$6$7$F`xFj\\lF4-F$6$7$Fj\\lF`xF4-F$6$7$Fj \\lFPF4-F$6$7$Fj\\lF\\yF4-F$6$7$F\\yFj\\lF4-F$6$7$Fj\\lFhyF4-F$6$7$F[s F`xF4-F$6$7$FauF]vF4-F$6$7$F_tF-F4-F$6$7$F\\yF`\\lF4-F$6$7$F`\\lFhyF4- F$6$7$FhyF`\\lF4-F$6$7$F\\[lF`\\lF4-F$6$7$FbzF`\\lF4-F$6$7$Ff[lF`\\lF4 -F$6$7$Fj\\lFEF4-F$6$7$FEFj\\lF4-F$6$7$FdqF-F4-F$6$7$F-F]vF4-F$6$7$F-F auF4-F$6$7$FdqFj\\lF4-F$6$7$Fj\\lFgsF4-F$6$7$FgsFj\\lF4-F$6$7$Ff[lFhyF 4-F$6$7$Ff[lF\\[lF4-F$6$7$FfoF-F4-F$6$7$FitFPF4-F$6$7$F_tF[wF4-F$6$7$F ]vFgsF4-F$6$7$FarF]vF4-F$6$7$F`\\lF`xF4-F$6$7$F`xF`\\lF4-F$6$7$F`\\lFP F4-F$6$7$F`\\lF\\yF4-F$6$7$Ff[lF[wF4-F$6$7$F[wFf[lF4-F$6$7$Ff[lF`xF4-F $6$7$F`xFf[lF4-F$6$7$Ff[lFPF4-F$6$7$FPFf[lF4-F$6$7$Ff[lF\\yF4-F$6$7$Ff [lFfoF4-F$6$7$FfoFf[lF4-F$6$7$Ff[lF_tF4-F$6$7$FgsFauF4-F$6$7$Ff[lF]vF4 -F$6$7$F]vFf[lF4-F$6$7$FcwFf[lF4-F$6$7$FbzF`xF4-F$6$7$F`xFbzF4-F$6$7$F bzFPF4-F$6$7$FPFbzF4-F$6$7$FbzF\\yF4-F$6$7$F\\yFbzF4-F$6$7$FbzFhyF4-F$ 6$7$FhyFbzF4-F$6$7$F\\[lFbzF4-F$6$7$FUFbzF4-F$6$7$FbzF]vF4-F$6$7$FgsFf oF4-F$6$7$F[sFarF4-F$6$7$F[sFgsF4-F$6$7$F[sFdqF4-F$6$7$F[wFbzF4-F$6$7$ F\\yF\\[lF4-F$6$7$F\\[lFhyF4-F$6$7$FhyF\\[lF4-F$6$7$FbzF-F4-F$6$7$FbzF UF4-F$6$7$F\\[lFjpF4-F$6$7$FjpF\\[lF4-F$6$7$F\\[lFitF4-F$6$7$FitF\\[lF 4-F$6$7$F\\[lFUF4-F$6$7$FcwF\\[lF4-F$6$7$F[wF\\[lF4-F$6$7$F`xF\\[lF4-F $6$7$FhyF`xF4-F$6$7$F`xFhyF4-F$6$7$FhyFPF4-F$6$7$FPFhyF4-F$6$7$FhyF\\y F4-F$6$7$FitFhyF4-F$6$7$FhyFUF4-F$6$7$FUFhyF4-F$6$7$F]vFhyF4-F$6$7$Far FEF4-F$6$7$FcwFhyF4-F$6$7$F[wFhyF4-F$6$7$F`xF\\yF4-F$6$7$F\\yFPF4-F$6$ 7$FPF\\yF4-F$6$7$FhyFEF4-F$6$7$FhyFgsF4-F$6$7$FhyFauF4-F$6$7$FhyFitF4- F$6$7$FcwF\\yF4-F$6$7$F[wF\\yF4-F$6$7$FitF\\yF4-F$6$7$F\\yF]vF4-F$6$7$ F]vF\\yF4-F$6$7$F\\yFcwF4-F$6$7$F\\yF[sF4-F$6$7$F[sF\\yF4-F$6$7$FgsF\\ yF4-F$6$7$F\\yFauF4-F$6$7$FauF\\yF4-F$6$7$FgsFPF4-F$6$7$FPFauF4-F$6$7$ FauFPF4-F$6$7$FPFitF4-F$6$7$F]vFPF4-F$6$7$FPFcwF4-F$6$7$FPF[wF4-F$6$7$ FPF`xF4-F$6$7$F-FPF4-F$6$7$FPF_tF4-F$6$7$FPFgsF4-F$6$7$F\\yFitF4-F$6$7 $FPF-F4-F$6$7$F`xFitF4-F$6$7$FitF`xF4-F$6$7$F`xFUF4-F$6$7$F`xF]vF4-F$6 $7$F`xFcwF4-F$6$7$FcwF`xF4-F$6$7$F[wFauF4-F$6$7$F[wF`xF4-F$6$7$F[wFitF 4-F$6$7$F[wFUF4-F$6$7$FUF[wF4-F$6$7$F[wF]vF4-F$6$7$F`xFbpF4-F$6$7$FbpF `xF4-F$6$7$F`xF[sF4-F$6$7$F`xF_tF4-F$6$7$F_tF`xF4-F$6$7$FgsF`xF4-F$6$7 $FauF`xF4-F$6$7$FcwFauF4-F$6$7$FauFcwF4-F$6$7$FitFcwF4-F$6$7$FcwFUF4-F $6$7$FUFcwF4-F$6$7$FcwF]vF4-F$6$7$F]vFcwF4-F$6$7$F[wFfoF4-F$6$7$F[wFar F4-F$6$7$F[wF[sF4-F$6$7$F[wFgsF4-F$6$7$FUF]vF4-F$6$7$FcwFEF4-F$6$7$FEF cwF4-F$6$7$FcwF-F4-F$6$7$FcwFarF4-F$6$7$FcwF[sF4-F$6$7$F[sFcwF4-F$6$7$ FcwF_tF4-F$6$7$F_tFcwF4-F$6$7$FcwFgsF4-F$6$7$FgsFcwF4-F$6$7$FUFgsF4-F$ 6$7$FgsFUF4-F$6$7$FUFauF4-F$6$7$FbpFEF4-F$6$7$F]vFitF4-F$6$7$F]vFUF4-F $6$7$FitFgsF4-F$6$7$FitFauF4-F$6$7$FauFitF4-F$6$7$FUFdqF4-F$6$7$FdqFUF 4-F$6$7$FUF-F4-F$6$7$F-FUF4-F$6$7$FUFarF4-F$6$7$FarFUF4-F$6$7$FUF[sF4- F$6$7$F_tFUF4-F$6$7$FdqFitF4-F$6$7$FitF-F4-F$6$7$F-FitF4-F$6$7$FitFarF 4-F$6$7$FitF[sF4-F$6$7$F[sFitF4-F$6$7$FauF-F4-F$6$7$FauFarF4-F$6$7$Fau F[sF4-F$6$7$FauF_tF4-F$6$7$FauFgsF4-F$6$7$FitFjpF4-F$6$7$FitFbpF4-F$6$ 7$FitFdqF4-F$6$7$FauFfoF4-F$6$7$FgsF_tF4-F$6$7$FbpFauF4-F$6$7$FauFdqF4 -F$6$7$FdqFauF4-F$6$7$FbpFgsF4-F$6$7$FgsFdqF4-F$6$7$FdqFgsF4-F$6$7$Fgs F-F4-F$6$7$FgsFarF4-F$6$7$F-F_tF4-F$6$7$F_tFarF4-F$6$7$FgsF[sF4-F$6$7$ FarF_tF4-F$6$7$F_tF[sF4-F$6$7$F'FgsF4-F$6$7$FfoFgsF4-F$6$7$FjpFgsF4-F$ 6$7$F_tFjpF4-F$6$7$FjpF_tF4-F$6$7$FbpF_tF4-F$6$7$FdqF_tF4-F$6$7$F_tFEF 4-F$6$7$FEF_tF4-F$6$7$F_tF'F4-F$6$7$F'F_tF4-F$6$7$F_tFfoF4-F$6$7$FfoF_ tF4-F$6$7$F[sFbpF4-F$6$7$FbpF[sF4-F$6$7$FdqF[sF4-F$6$7$F[sF-F4-F$6$7$F -F[sF4-F$6$7$FarF[sF4-F$6$7$FfoF[sF4-F$6$7$F[sFjpF4-F$6$7$FjpF[sF4-F$6 $7$F-FarF4-F$6$7$F[sF=F4-F$6$7$F=F[sF4-F$6$7$F[sFEF4-F$6$7$F[sF'F4-F$6 $7$F'F[sF4-F$6$7$F[sFfoF4-F$6$7$FdqFarF4-F$6$7$FarF-F4-F$6$7$FarF'F4-F $6$7$F'FarF4-F$6$7$FfoFarF4-F$6$7$FjpFarF4-F$6$7$FbpFarF4-F$6$7$FbpF-F 4-F$6$7$F-FdqF4-F$6$7$FEFarF4-F$6$7$F-FbpF4-%*AXESSTYLEG6#%%NONEG" 1 2 0 1 10 0 2 9 1 1 2 1.000000 45.000000 45.000000 0 0 "Curve 1" "Curve 2" "Curve 3" "Curve 4" "Curve 5" "Curve 6" "Curve 7" "Curve 8" "Curve 9" "Curve 10" "Curve 11" "Curve 12" "Curve 13" "Curve 14" "Curve 15" "Curve 16" "Curve 17" "Curve 18" "Curve 19" "Curve 20" "Curve 21" "Cur ve 22" "Curve 23" "Curve 24" "Curve 25" "Curve 26" "Curve 27" "Curve 2 8" "Curve 29" "Curve 30" "Curve 31" "Curve 32" "Curve 33" "Curve 34" " Curve 35" "Curve 36" "Curve 37" "Curve 38" "Curve 39" "Curve 40" "Curv e 41" "Curve 42" "Curve 43" "Curve 44" "Curve 45" "Curve 46" "Curve 47 " "Curve 48" "Curve 49" "Curve 50" "Curve 51" "Curve 52" "Curve 53" "C urve 54" "Curve 55" "Curve 56" "Curve 57" "Curve 58" "Curve 59" "Curve 60" "Curve 61" "Curve 62" "Curve 63" "Curve 64" "Curve 65" "Curve 66 " "Curve 67" "Curve 68" "Curve 69" "Curve 70" "Curve 71" "Curve 72" "C urve 73" "Curve 74" "Curve 75" "Curve 76" "Curve 77" "Curve 78" "Curve 79" "Curve 80" "Curve 81" "Curve 82" "Curve 83" "Curve 84" "Curve 85 " "Curve 86" "Curve 87" "Curve 88" "Curve 89" "Curve 90" "Curve 91" "C urve 92" "Curve 93" "Curve 94" "Curve 95" "Curve 96" "Curve 97" "Curve 98" "Curve 99" "Curve 100" "Curve 101" "Curve 102" "Curve 103" "Curve 104" "Curve 105" "Curve 106" "Curve 107" "Curve 108" "Curve 109" "Cur ve 110" "Curve 111" "Curve 112" "Curve 113" "Curve 114" "Curve 115" "C urve 116" "Curve 117" "Curve 118" "Curve 119" "Curve 120" "Curve 121" "Curve 122" "Curve 123" "Curve 124" "Curve 125" "Curve 126" "Curve 127 " "Curve 128" "Curve 129" "Curve 130" "Curve 131" "Curve 132" "Curve 1 33" "Curve 134" "Curve 135" "Curve 136" "Curve 137" "Curve 138" "Curve 139" "Curve 140" "Curve 141" "Curve 142" "Curve 143" "Curve 144" "Cur ve 145" "Curve 146" "Curve 147" "Curve 148" "Curve 149" "Curve 150" "C urve 151" "Curve 152" "Curve 153" "Curve 154" "Curve 155" "Curve 156" "Curve 157" "Curve 158" "Curve 159" "Curve 160" "Curve 161" "Curve 162 " "Curve 163" "Curve 164" "Curve 165" "Curve 166" "Curve 167" "Curve 1 68" "Curve 169" "Curve 170" "Curve 171" "Curve 172" "Curve 173" "Curve 174" "Curve 175" "Curve 176" "Curve 177" "Curve 178" "Curve 179" "Cur ve 180" "Curve 181" "Curve 182" "Curve 183" "Curve 184" "Curve 185" "C urve 186" "Curve 187" "Curve 188" "Curve 189" "Curve 190" "Curve 191" "Curve 192" "Curve 193" "Curve 194" "Curve 195" "Curve 196" "Curve 197 " "Curve 198" "Curve 199" "Curve 200" "Curve 201" "Curve 202" "Curve 2 03" "Curve 204" "Curve 205" "Curve 206" "Curve 207" "Curve 208" "Curve 209" "Curve 210" "Curve 211" "Curve 212" "Curve 213" "Curve 214" "Cur ve 215" "Curve 216" "Curve 217" "Curve 218" "Curve 219" "Curve 220" "C urve 221" "Curve 222" "Curve 223" "Curve 224" "Curve 225" "Curve 226" "Curve 227" "Curve 228" "Curve 229" "Curve 230" "Curve 231" "Curve 232 " "Curve 233" "Curve 234" "Curve 235" "Curve 236" "Curve 237" "Curve 2 38" "Curve 239" "Curve 240" "Curve 241" "Curve 242" "Curve 243" "Curve 244" "Curve 245" "Curve 246" "Curve 247" "Curve 248" "Curve 249" "Cur ve 250" "Curve 251" "Curve 252" "Curve 253" "Curve 254" "Curve 255" "C urve 256" "Curve 257" "Curve 258" "Curve 259" "Curve 260" "Curve 261" "Curve 262" "Curve 263" "Curve 264" "Curve 265" "Curve 266" "Curve 267 " "Curve 268" "Curve 269" "Curve 270" "Curve 271" "Curve 272" "Curve 2 73" "Curve 274" "Curve 275" "Curve 276" "Curve 277" "Curve 278" "Curve 279" "Curve 280" "Curve 281" "Curve 282" "Curve 283" "Curve 284" "Cur ve 285" "Curve 286" "Curve 287" "Curve 288" "Curve 289" "Curve 290" "C urve 291" "Curve 292" "Curve 293" "Curve 294" "Curve 295" "Curve 296" "Curve 297" "Curve 298" "Curve 299" "Curve 300" "Curve 301" "Curve 302 " "Curve 303" "Curve 304" "Curve 305" "Curve 306" "Curve 307" "Curve 3 08" "Curve 309" "Curve 310" "Curve 311" "Curve 312" "Curve 313" "Curve 314" "Curve 315" "Curve 316" "Curve 317" "Curve 318" "Curve 319" "Cur ve 320" "Curve 321" "Curve 322" "Curve 323" "Curve 324" "Curve 325" "C urve 326" "Curve 327" "Curve 328" "Curve 329" "Curve 330" "Curve 331" "Curve 332" "Curve 333" "Curve 334" "Curve 335" "Curve 336" "Curve 337 " "Curve 338" "Curve 339" "Curve 340" "Curve 341" "Curve 342" "Curve 3 43" "Curve 344" "Curve 345" "Curve 346" "Curve 347" "Curve 348" "Curve 349" "Curve 350" "Curve 351" "Curve 352" "Curve 353" "Curve 354" "Cur ve 355" "Curve 356" "Curve 357" "Curve 358" "Curve 359" "Curve 360" "C urve 361" "Curve 362" "Curve 363" "Curve 364" "Curve 365" "Curve 366" "Curve 367" "Curve 368" "Curve 369" "Curve 370" "Curve 371" "Curve 372 " "Curve 373" "Curve 374" "Curve 375" "Curve 376" "Curve 377" "Curve 3 78" "Curve 379" "Curve 380" "Curve 381" "Curve 382" "Curve 383" "Curve 384" "Curve 385" "Curve 386" "Curve 387" "Curve 388" "Curve 389" "Cur ve 390" "Curve 391" "Curve 392" "Curve 393" "Curve 394" "Curve 395" "C urve 396" "Curve 397" "Curve 398" "Curve 399" "Curve 400" "Curve 401" "Curve 402" "Curve 403" "Curve 404" "Curve 405" "Curve 406" "Curve 407 " "Curve 408" "Curve 409" "Curve 410" "Curve 411" "Curve 412" "Curve 4 13" "Curve 414" "Curve 415" "Curve 416" "Curve 417" "Curve 418" "Curve 419" "Curve 420" "Curve 421" "Curve 422" "Curve 423" "Curve 424" "Cur ve 425" "Curve 426" "Curve 427" "Curve 428" "Curve 429" "Curve 430" "C urve 431" "Curve 432" "Curve 433" "Curve 434" "Curve 435" "Curve 436" "Curve 437" "Curve 438" "Curve 439" "Curve 440" "Curve 441" "Curve 442 " "Curve 443" "Curve 444" "Curve 445" "Curve 446" "Curve 447" "Curve 4 48" "Curve 449" "Curve 450" "Curve 451" "Curve 452" "Curve 453" "Curve 454" "Curve 455" "Curve 456" "Curve 457" "Curve 458" "Curve 459" "Cur ve 460" "Curve 461" "Curve 462" "Curve 463" "Curve 464" "Curve 465" "C urve 466" "Curve 467" "Curve 468" "Curve 469" "Curve 470" "Curve 471" "Curve 472" "Curve 473" "Curve 474" "Curve 475" "Curve 476" "Curve 477 " "Curve 478" "Curve 479" "Curve 480" "Curve 481" "Curve 482" "Curve 4 83" "Curve 484" "Curve 485" "Curve 486" "Curve 487" "Curve 488" "Curve 489" "Curve 490" "Curve 491" "Curve 492" "Curve 493" "Curve 494" "Cur ve 495" "Curve 496" "Curve 497" "Curve 498" "Curve 499" "Curve 500" "C urve 501" "Curve 502" "Curve 503" "Curve 504" "Curve 505" "Curve 506" "Curve 507" "Curve 508" "Curve 509" "Curve 510" "Curve 511" "Curve 512 " "Curve 513" "Curve 514" "Curve 515" "Curve 516" "Curve 517" "Curve 5 18" "Curve 519" "Curve 520" "Curve 521" "Curve 522" "Curve 523" "Curve 524" "Curve 525" "Curve 526" "Curve 527" "Curve 528" "Curve 529" "Cur ve 530" "Curve 531" "Curve 532" "Curve 533" "Curve 534" "Curve 535" "C urve 536" "Curve 537" "Curve 538" "Curve 539" "Curve 540" "Curve 541" "Curve 542" "Curve 543" "Curve 544" "Curve 545" "Curve 546" "Curve 547 " "Curve 548" "Curve 549" "Curve 550" "Curve 551" "Curve 552" "Curve 5 53" "Curve 554" "Curve 555" "Curve 556" "Curve 557" "Curve 558" "Curve 559" "Curve 560" "Curve 561" "Curve 562" "Curve 563" "Curve 564" "Cur ve 565" "Curve 566" "Curve 567" "Curve 568" "Curve 569" "Curve 570" "C urve 571" "Curve 572" "Curve 573" "Curve 574" "Curve 575" "Curve 576" "Curve 577" "Curve 578" "Curve 579" "Curve 580" "Curve 581" "Curve 582 " "Curve 583" "Curve 584" "Curve 585" "Curve 586" "Curve 587" "Curve 5 88" "Curve 589" "Curve 590" "Curve 591" "Curve 592" "Curve 593" "Curve 594" "Curve 595" "Curve 596" "Curve 597" "Curve 598" "Curve 599" "Cur ve 600" "Curve 601" "Curve 602" "Curve 603" "Curve 604" "Curve 605" "C urve 606" "Curve 607" "Curve 608" "Curve 609" "Curve 610" "Curve 611" "Curve 612" }}}{PARA 11 "" 1 "" {XPPMATH 20 "6#7&\"\"!\"\"*\"#6\"#A" } }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{PARA 214 "" 0 "" {TEXT -1 0 "" }}{PARA 215 "" 0 "" {TEXT -1 0 "" }}{PARA 216 "" 0 "" {TEXT -1 0 "" }}}{MARK "0 7 0" 0 }{VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 } {PAGENUMBERS 0 1 2 33 1 1 }